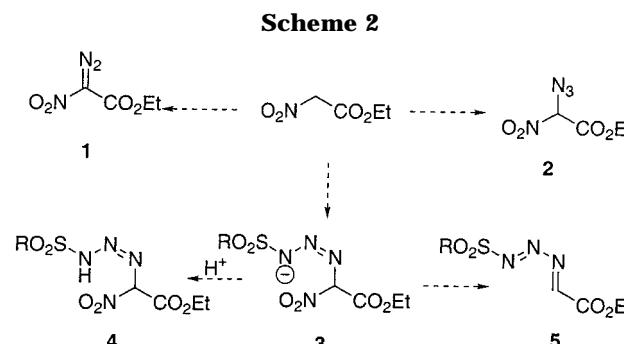
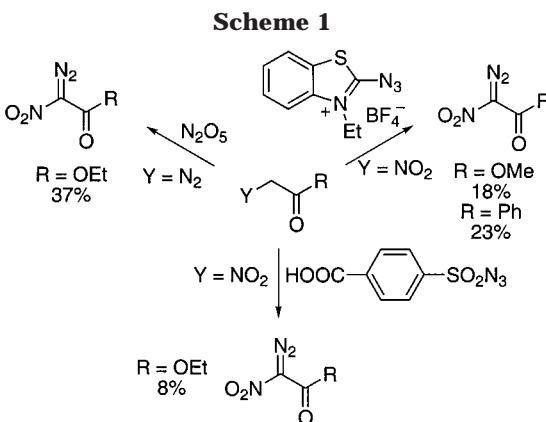


## Trifluoromethanesulfonyl Azide: A Powerful Reagent for the Preparation of $\alpha$ -Nitro- $\alpha$ -diazocarbonyl Derivatives

André B. Charette,\* Ryan P. Wurz, and Thierry Ollevier

Département de Chimie, Université de Montréal,  
P.O. Box 6128, Station Downtown,  
Montréal (Québec) Canada, H3C 3J7



andre.charette@umontreal.ca

Received August 14, 2000

The importance of  $\alpha$ -diazocarbonyl reagents has been recognized for a number of years.<sup>1</sup> These reagents are ideal precursors for several transition metal-catalyzed processes including cyclopropanations and X–H insertion reactions (X = C, O, N, S, P, etc.)<sup>2</sup> and the phosphorus or sulfur ylide formation.<sup>3</sup> As part of our research program aiming at developing new methods for the stereoselective synthesis of unnatural amino acids,<sup>4</sup> we became interested in using  $\alpha$ -nitro- $\alpha$ -diazocarbonyl derivatives as potential synthetic precursors. Herein, we report a much improved procedure to prepare these reagents which is amenable to the synthesis of a large number of structurally diverse derivatives.

The synthesis of  $\alpha$ -nitro- $\alpha$ -diazocarbonyl derivatives has been known for many years, and it involves the treatment of  $\alpha$ -nitroesters with 2-azido-3-ethylbenzothiazolium fluoroborate<sup>5</sup> or with *p*-carboxybenzenesulfonazide.<sup>6</sup> Alternatively, they can be prepared by treating diazoester derivatives with dinitrogen pentoxide<sup>7</sup> (Scheme 1).

The first two methods are not very efficient (<20% yield of the diazo compound is obtained) while the latter involves a nonreadily available and unstable reagent ( $N_2O_5$ ). Although the synthesis of 2-diazo-1,3-dicarbonyl<sup>8</sup> and 2-diazo-3-ketoesters<sup>9</sup> are well-established processes,



it has been reported that the popular diazo transfer reagents such as tosyl azide or mesyl azide fail to generate reasonable yields of the desired  $\alpha$ -nitro- $\alpha$ -diazocarbonyl derivatives. Among the possible side reactions that can be observed in addition to the formation of the  $\alpha$ -azido derivative **2** is the formation of a triazenes **4** and **5** (Scheme 2).<sup>10,11</sup> We reasoned that the use of a stronger electron-withdrawing group (R) on the sulfonyl azide reagent and appropriate base (or conjugate acid) may prevent these undesirable side-reactions and provide an efficient access to this class of synthetically useful compounds.

Several diazo transfer reagents and bases were tested and, gratifyingly, it was found that a hexane solution of trifluoromethanesulfonyl (triflyl) azide reacts smoothly with ethyl nitroacetate in acetonitrile upon addition of pyridine to generate ethyl  $\alpha$ -nitro- $\alpha$ -diazoacetate in 88% yield. As a follow-up of this observation, several  $\alpha$ -nitro-ester precursors were prepared,<sup>12</sup> and they all could be converted cleanly to the desired diazo substrate (Table 1).<sup>13</sup> The reactions were typically stirred for 15 h, but in most cases the diazo transfer process occurred rapidly. Bulky esters could also be easily converted into the  $\alpha$ -diazo derivatives. For example, *tert*-butyl (entry 4), menthyl (entry 8), and 2-phenylcyclohexyl (entry 9) esters

\* Corresponding author. Tel: 514-343-2432. Fax: 514-343-5900.  
(1) (a) Doyle, M. P.; McKervey, M. A.; Ye, T. *Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides*; John Wiley & Sons: New York, 1998. (b) Ye, T.; McKervey, M. A. *Chem. Rev.* **1994**, *94*, 1091–1160.

(2) For reviews, see: (a) Doyle, M. P.; Forbes, D. C. *Chem. Rev.* **1998**, *98*, 911–935. (b) Calter, M. A. *Curr. Org. Chem.* **1997**, *1*, 37–70. (c) Singh, V. K.; DattaGupta, A.; Sekar, G. *Synthesis* **1997**, 137–149. (d) Davies, H. M. L. *Curr. Org. Chem.* **1998**, *2*, 463–488. (e) Muller, P.; Fernandez, D.; Nury, P.; Rossier, J. C. *J. Phys. Org. Chem.* **1998**, *11*, 321–333.

(3) Li, A. H.; Dai, L. X.; Aggarwal, V. K. *Chem. Rev.* **1997**, *97*, 2341–2372.

(4) See for example: (a) Charette, A. B.; Côté, B. *J. Am. Chem. Soc.* **1995**, *117*, 12721–12732. (b) Charette, A. B.; Mellon, C. *Tetrahedron* **1998**, *54*, 10525–10535. (c) Charette, A. B.; Gagnon, A.; Janes, M.; Mellon, C. *Tetrahedron Lett.* **1998**, *39*, 5147–5150. (d) Charette, A. B.; Gagnon, A. *Tetrahedron: Asymmetry* **1999**, *10*, 1961–1968.

(5) (a) Balli, H.; Löw, R. *Tetrahedron Lett.* **1966**, 5821–5822. (b) Balli, H.; Löw, R.; Müller, V.; Rempfle, H.; Sezen-Gezgin, A. *Helv. Chim. Acta* **1978**, *61*, 97–103.

(6) Hendrickson, J. B.; Wolf, W. A. *J. Org. Chem.* **1968**, *33*, 3610–3618.

(7) (a) O'Bannon, P. E.; Dailey, W. P. *Tetrahedron Lett.* **1989**, *30*, 4197–4200. (b) O'Bannon, P. E.; Dailey, W. P. *J. Org. Chem.* **1989**, *54*, 3096–3101. (c) O'Bannon, P. E.; Dailey, W. P. *Tetrahedron* **1990**, *46*, 7341–7358.

(8) Regitz, M. *Synthesis* **1972**, 351–373.

(9) Taber, D. F.; Ruckle, R. E., Jr.; Hennessy, M. J. *J. Org. Chem.* **1986**, *51*, 4077–4078.

(10) Koft, E. R. *J. Org. Chem.* **1987**, *52*, 3466–3468.

(11) For a very good discussion of the various reaction pathways involved in the reactions of stabilized carbanions with arylsulfonyl azide reagents, see: Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. *J. Am. Chem. Soc.* **1990**, *112*, 4011–4030.

(12) The starting  $\alpha$ -nitroesters were prepared according to: Sylvain, C.; Wagner, A.; Mioskowski, C. *Tetrahedron Lett.* **1999**, *40*, 875–878.

(13) The characterization data of the known nitrodiazo derivatives were consistent to those reported in the literature: entry 1: Schöllkopf, U.; Tonne, P.; Schäfer, H.; Markusch, P. *Ann. Chem.* **1969**, *722*, 45–51 and ref 7c; entries 4 and 10: see ref 7c.

**Table 1. Synthesis of  $\alpha$ -nitro- $\alpha$ -diazocarbonyl Derivatives**

| Entry | R-                                                                      | Yield (%) <sup>a</sup> |
|-------|-------------------------------------------------------------------------|------------------------|
| 1     | EtO-                                                                    | 88                     |
| 2     | CH <sub>2</sub> =CHCH <sub>2</sub> O-                                   | 88                     |
| 3     | i-PrO-                                                                  | 90                     |
| 4     | t-BuO-                                                                  | 90                     |
| 5     | (E)-PhCH=CHCH <sub>2</sub> O-                                           | 83                     |
| 6     |                                                                         | 72                     |
| 7     | 4-(PhCH <sub>2</sub> O)C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> O- | 90                     |
| 8     |                                                                         | 88                     |
| 9     |                                                                         | 61                     |
| 10    | Ph-                                                                     | 66                     |
| 11    | t-Bu-                                                                   | 65                     |
| 12    | c-C <sub>6</sub> H <sub>11</sub> -                                      | 67                     |

<sup>a</sup> Isolated yields after column chromatography.

were all converted into the desired compounds under the reaction conditions. In addition, the diazo transfer reaction also occurred cleanly with  $\alpha$ -nitroketones,<sup>14</sup> but the yields were generally slightly lower than those observed with the esters (Table 1, entries 10–12).

In conclusion, we have described a highly efficient method for the preparation of  $\alpha$ -nitro- $\alpha$ -diazocarbonyl derivatives from the corresponding  $\alpha$ -nitrocarbonyl using triflyl azide/pyridine. The use of these compounds in transition metal-catalyzed processes is currently underway and will be reported in due course.

## Experimental Section

Although we have not experienced any problem in the handling of these compounds (triflyl azide and the  $\alpha$ -nitro- $\alpha$ -diazocarbonyl derivatives), extreme care should be taken when manipulating them due to their explosive nature.<sup>15,16</sup>

**Preparation of Triflyl Azide Solution.**<sup>17</sup> A solution of sodium azide (3.32 g, 51.1 mmol) and tetrabutylammonium hydrogen sulfate (0.160 g, 0.471 mmol) in distilled water (23 mL) was cooled to 0 °C. A solution of triflic anhydride (6.71 g, 2.0 mL, 23.8 mmol) in hexane (22 mL) was then slowly added, and the resulting clear solution was stirred for an additional 1 h at 0 °C. The reaction mixture was then extracted with hexane (20 mL), and the organic layer was dried over sodium hydroxide

(14) For the preparation of  $\alpha$ -nitroketones, see: (a) Zen, S.; Koyama, M.; Doto, S. *Organic Syntheses*; Wiley: New York, 1973; Collect. Vol. VI, pp 797–799. (b) Baker, D. C.; Putt, S. R. *Synthesis* **1978**, 478–479.

(15) General experimental procedures are described in the Supporting Information.

(16) See ref 1a for a general discussion about the stability of diazo compounds and sulfonyl azides.

(17) (a) Cavender, C. J.; Shiner, V. J., Jr. *J. Org. Chem.* **1972**, *37*, 3567–3569. (b) Fritschi, S.; Vasella, A. *Helv. Chim. Acta* **1991**, *74*, 2024–2034.

pellets and decanted. The hexane solution of triflyl azide was used immediately in the subsequent reaction. Alternatively, it could be stored at –15 °C for several weeks without significant decomposition. The concentration of the azide was estimated based on the total volume of the solution and assuming a quantitative conversion based on the amount of triflic anhydride used.

### Typical Procedure for the Preparation of the $\alpha$ -Diazoo- $\alpha$ -nitro Carbonyl: Ethyl Nitrodiazoacetate (Table 1, entry 1).

To a stirred solution of the ethyl nitroacetate (697 mg, 5.24 mmol) in acetonitrile (3 mL) under argon was added a 0.52 M solution of triflyl azide (11.1 mL, 5.76 mmol) in hexane. Pyridine (0.79 mL, 10.48 mmol) was then added dropwise (over ca. 3 min). The reaction mixture was stirred at room temperature for 15 h after which it was concentrated under reduced pressure (rotary evaporator). Purification of the crude residue by flash chromatography on silica gel (CHCl<sub>3</sub>) afforded the pure nitrodiazo ester as a yellow oil (733 mg, 88%): *R*<sub>f</sub> 0.55 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.42 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  155.3, 101.7 (CN<sub>2</sub>), 63.1, 14.2. IR (film) 2148, 1749, 1695, 1515 cm<sup>–1</sup>.

**Allyl Nitrodiazoacetate (Table 1, entry 2).** The title compound was obtained as a yellow oil on a 1.07 mmol scale (88%) according to the general procedure: *R*<sub>f</sub> 0.61 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.96 (m, 1H), 5.39 (m, 2H), 4.83 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  155.1, 130.6, 120.1, 101.6 (CN<sub>2</sub>), 67.1; IR (film) 2147, 1746, 1702, 1649, 1513 cm<sup>–1</sup>.

**Isopropyl Nitrodiazoacetate (Table 1, entry 3).** The title compound was obtained as a yellow oil on a 1.08 mmol scale (90%) according to the typical procedure: *R*<sub>f</sub> 0.67 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.19 (sept, *J* = 5.7 Hz, 1H), 1.30 (d, *J* = 6.3 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.8, 101.6 (CN<sub>2</sub>), 71.7, 21.8; IR (film) 2150, 1738, 1517, 1321, 1223, 1094, 908, 744 cm<sup>–1</sup>.

**(E)-Cinnamyl Nitrodiazoacetate (Table 1, entry 5).** The title compound was obtained as a yellow crystalline solid on a 0.636 mmol scale (83%) according to the typical procedure: mp 62–63 °C; *R*<sub>f</sub> 0.78 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (m, 5H), 6.75 (d, *J* = 15.9 Hz, 1H), 6.30 (dt, *J* = 15.8, 6.7 Hz, 1H), 4.99 (d, *J* = 6.7 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  155.5, 136.8, 135.7, 128.9, 128.8, 127.0, 121.3, 67.6; IR (film) 2145, 1738, 1699, 1515 cm<sup>–1</sup>.

### Cyclopropylmethyl Nitrodiazoacetate (Table 1, entry 6).

This compound was obtained as a yellow oil on a 0.5 mmol scale (72%), according to the typical procedure: *R*<sub>f</sub> 0.59 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.18 (d, *J* = 7.4 Hz, 2 H), 1.20 (m, 1H), 0.64 (m, 2H), 0.35 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  155.4, 101.6 (CN<sub>2</sub>), 71.8, 9.8, 3.6; IR (film) 2149, 1743, 1697, 1521 cm<sup>–1</sup>.

### 4-(Benzyl)benzyl Nitrodiazoacetate (Table 1, entry 7).

The title compound was obtained as a yellow crystalline solid on a 0.318 mmol scale (85%) according to the typical procedure: mp 89–90 °C; *R*<sub>f</sub> 0.58 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (m, 7H), 7.00 (d, *J* = 8.7 Hz, 2H), 5.30 (s, 2H), 5.09 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 155.4, 136.8, 130.9, 128.8, 128.2, 127.6, 126.7, 115.2, 77.4 (CN<sub>2</sub>), 70.2, 68.4; IR (film) 2146, 1745, 1694, 1612, 1514 cm<sup>–1</sup>.

### (1R,2S,5R)-Menthyl Nitrodiazoacetate (Table 1, entry 8).

The title compound was obtained as a yellow oil on a 0.50 mmol scale (88%) according to the typical procedure: *R*<sub>f</sub> 0.62 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.93 (m, 1H), 2.08 (m, 1H), 1.84 (m, 1H), 1.72 (m, 2H), 1.51 (m, 2H), 1.10 (m, 2H), 0.92 (m, 6H), 0.86 (m, 1H), 0.79 (d, *J* = 6.9 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  155.2, 101.6 (CN<sub>2</sub>), 78.1, 47.1, 41.0, 34.1, 31.6, 26.6, 23.6, 22.1, 20.8, 16.5. IR (film) 2145, 1739, 1694, 1525 cm<sup>–1</sup>. Anal. Calcd for C<sub>12</sub>H<sub>19</sub>N<sub>3</sub>O<sub>4</sub>: C, 53.52; H, 7.11. Found: C, 53.52; H, 7.38.

### (1R,2S,5R)-2-Phenylcyclohexyl Nitrodiazoacetate (Table 1, entry 9).

This compound was obtained as a yellow oil on a 0.60 mmol scale (61%) according to the typical procedure: *R*<sub>f</sub> 0.62 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.31–7.15 (m, 5H), 5.10 (m, 1H), 2.71 (m, 1H), 2.28 (m, 1H), 2.01–1.91 (m, 2H), 1.82 (m, 1H), 1.62 (m, 1H), 1.57–1.50 (m, 2H), 1.39 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.5, 142.3, 128.8, 127.5, 127.1, 101.1 (CN<sub>2</sub>), 80.2, 49.8, 33.5, 32.5, 25.7, 24.8. IR (film) 2145, 1743, 1696, 1602, 1520 cm<sup>–1</sup>.

**Typical Procedure for the Preparation of  $\alpha$ -Nitro- $\alpha$ -diazo Ketones:  $\alpha$ -Nitro- $\alpha$ -diazomethyl Cyclohexyl Ketone (Table 1, entry 12).** To a solution of  $\alpha$ -nitromethyl cyclohexyl ketone (171 mg, 1.00 mmol) in acetonitrile (1.0 mL) was added a 0.65 M solution of triflyl azide (1.69 mL, 1.1 mmol) in hexane. Pyridine (0.15 mL, 2.0 mmol) was then added dropwise. The reaction mixture was stirred at room temperature for 3 h at which point the reaction mixture was concentrated under reduced pressure (rotary evaporator). Purification of the crude product by flash chromatography on silica gel (CHCl<sub>3</sub>) afforded the desired pure nitrodiazo ketone as a white solid (133 mg, 67%): mp 62 °C; *R*<sub>f</sub> 0.69 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 3.41 (m, 1 H), 1.86 (m, 4 H), 1.75 (m, 1 H), 1.42 (m, 4 H), 1.25 (m, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 190.0, 112.1 (CN<sub>2</sub>), 47.3, 28.4, 25.8, 25.6. IR (KBr) 2174, 1651, 1532 cm<sup>-1</sup>.

**Nitrodiazomethyl *tert*-Butyl Ketone (Table 1, entry 11).** This compound was obtained as a yellow oil on a 1.06 mmol scale

(65%) according to the typical procedure: *R*<sub>f</sub> 0.77 (CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 1.35 (s, 9 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 191.1, 44.8, 25.7. IR (film) 2160, 1686, 1651, 1517 cm<sup>-1</sup>.

**Acknowledgment.** This work was supported by NSERC (Canada), Merck Frosst, Boehringer Ingelheim (Canada) Ltd. and the Université de Montréal. We are grateful to Dr. Rupert Spence for helpful discussions.

**Supporting Information Available:** General experimental procedures and <sup>1</sup>H and <sup>13</sup>C NMR spectra of all new compounds. This material is available free of charge via the Internet at <http://pubs.acs.org>.

JO001235W